Fiber hit uniformity study

Reinhard Schwienhorst University of Minnesota

E872 phone meeting, short report, 1/29/99

Purpose and Goal

- Determine the variation of the fiber pulseheight and hit frequency for fibers in a single plane
- Find "dead" fibers

Method

- Loop over 400 .nustrip files and for all pixels belonging to a fiber:
 - find the average pixel pulseheight
 - find the maximum pixel pulseheight
- find the frequency with which this fiber is hit

Plots

- Average pulseheight for pixels in one CCD image
- Frequency with which a fiber is hit
 - dead fibers are either always or never hit

Average pixel pulseheight, CCD camera 0

Average pixel pulseheight, CCD camera 0

Number of times one pixel in a fiber is hit

Spikes

- Each figure shows several spikes to the bottom. These occur at the edge of a "paddle".
 - The fiber at the edge only has neighbors to one side
- → expect half the count due to crosstalk
 - It makes no difference if all pixels are considered or only the ones with fiber hits.

Paddles

- Sometimes adjacent paddles show the same pattern
 - due to glue, IIT focussing,

• •

Conclusion and Outlook

- No regions with many dead fibers have been found in the SF system.
- Each fiber plane shows "features" that are a result of the paddle and IIT structure
- The variations within a single CCD camera are within a factor of four
 - has no effect on tracking
 - Each paddle has ~300 fibers (1% at the edge)
- No further studies are planned